LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tips and Tools to Understand Direct Membrane Translocation of siRNA-Loaded WRAP-Based Nanoparticles.

Photo by sofya_sokolova from unsplash

Cell-penetrating peptide (CPP)-based approaches are excellent method for delivering cell-impermeable compounds/therapeutics such as proteins, antibodies, antisense oligonucleotides, siRNAs, plasmids, and drugs, as covalently or noncovalently conjugated cargo into cells. Nowadays,… Click to show full abstract

Cell-penetrating peptide (CPP)-based approaches are excellent method for delivering cell-impermeable compounds/therapeutics such as proteins, antibodies, antisense oligonucleotides, siRNAs, plasmids, and drugs, as covalently or noncovalently conjugated cargo into cells. Nowadays, it is generally accepted that cellular internalization of these CPP-cargoes or CPP-nanoparticles occur via endocytosis-dependent mechanisms or by direct cell translocation.Here, we describe a subset of biophysical and biological methods which can be used to dissect the internalization mechanism of CPPs. Presented protocols and results were shown for the recently developed siRNA-loaded WRAP-based nanoparticles. The rapid and efficient cell delivery of WRAP encapsulated siRNA could be attributed to the main direct cellular translocation of the nanoparticles even if, to some extent, endocytosis-dependent internalization occurred.Deciphering the internalization mechanism is still an important requirement to understand and to optimize the action mode of CPPs or CPP-based nanoparticles as transfection reagents.

Keywords: sirna loaded; loaded wrap; translocation; based nanoparticles

Journal Title: Methods in molecular biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.