LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptome-Wide Profiling of RNA Stability.

Photo from archive.org

Gene expression is controlled at multiple levels, including RNA transcription and turnover. But determining the relative contributions of RNA biogenesis and decay to the steady-state abundance of cellular transcripts remains… Click to show full abstract

Gene expression is controlled at multiple levels, including RNA transcription and turnover. But determining the relative contributions of RNA biogenesis and decay to the steady-state abundance of cellular transcripts remains challenging because conventional transcriptomics approaches do not provide the temporal resolution to derive the kinetic parameters underlying steady-state gene expression.Here, we describe a protocol that combines metabolic RNA labeling by 4-thiouridine with chemical nucleoside conversion and whole-transcriptome sequencing followed by bioinformatics analysis to determine RNA stability in cultured cells at a genomic scale. Time-resolved transcriptomics by thiol (SH)-linked alkylation for the metabolic sequencing of RNA (SLAMseq) provides accurate information on transcript half-lives across annotated features in the genome, including by-products of transcription, such as introns. We provide a step-by-step instruction for time-resolved transcriptomics, which enhances traditional RNA sequencing protocols to acquire the temporal resolution required to directly measure the cellular kinetics of RNA turnover under physiological conditions.

Keywords: profiling rna; rna stability; transcriptome wide; wide profiling; stability

Journal Title: Methods in molecular biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.