Chromosome conformation capture (3C) technology and its derivatives are currently the primary methodologies measuring contacts among genomic elements. In fact, the lion share of what is currently known about chromosome… Click to show full abstract
Chromosome conformation capture (3C) technology and its derivatives are currently the primary methodologies measuring contacts among genomic elements. In fact, the lion share of what is currently known about chromosome folding is based on 3C-related approaches. For example, distal enhancers are commonly in physically proximity with their target genes, forming chromatin loops. Additional layers of chromatin organization have been described using 3C-based techniques, including topological domains (TADs) and sub-TADs. Finally, inter-chromosomal interactions have been reported although they are much less frequent. 3C is becoming increasingly widespread in its use for understanding genome organization. Here we provide a protocol for quantitative 3C using real-time PCR analysis, along with essential quality controls and normalization methods.
               
Click one of the above tabs to view related content.