LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of Nuclear Uracil DNA-Glycosylase (nUDG) Turnover During the Cell Cycle.

Photo from wikipedia

Uracil-DNA glycosylases (UDG/UNG) are enzymes that remove uracil from DNA and initiate base-excision repair. These enzymes play a key role in maintaining genomic integrity by reducing the mutagenic events caused… Click to show full abstract

Uracil-DNA glycosylases (UDG/UNG) are enzymes that remove uracil from DNA and initiate base-excision repair. These enzymes play a key role in maintaining genomic integrity by reducing the mutagenic events caused by G:C to A:T transition mutations. The recent finding that a family of RNA editing enzymes (AID/APOBECs) can deaminate cytosine in DNA has raised the interest in these base-excision repair enzymes. The methodology presented here focuses on determining the regulation of the nuclear isoform of uracil-DNA glycosylase (nUDG), a 36,000 Da protein. In synchronized HeLa cells, nUDG protein levels decrease to barely detectable levels during the S phase of the cell cycle. Immunoblot analysis of immunoprecipitated or affinity-isolated nUDG reveals ubiquitin-conjugated nUDG when proteolysis is inhibited by agents that block proteasomal-dependent protein degradation.

Keywords: uracil dna; dna; cell cycle; dna glycosylase; glycosylase nudg

Journal Title: Methods in molecular biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.