Central nervous system tissue contains a high density of synapses each composed of an intricate molecular machinery mediating precise transmission of information. Deciphering the molecular nanostructure of pre- and postsynaptic… Click to show full abstract
Central nervous system tissue contains a high density of synapses each composed of an intricate molecular machinery mediating precise transmission of information. Deciphering the molecular nanostructure of pre- and postsynaptic specializations within such a complex tissue architecture poses a particular challenge for light microscopy. Here, we describe two approaches suitable to examine the molecular nanostructure of synapses at 20-30 nm lateral and 50-70 nm axial resolution within an area of 500 μm × 500 μm and a depth of 0.6 μm to several micrometers. We employ single-molecule localization microscopy (SMLM) on immunolabeled fixed brain tissue slices. tomoSTORM utilizes array tomography to achieve SMLM in 40 nm thick resin-embedded sections. dSTORM of cryo-sectioned slices uses optical sectioning in 0.1-4 μm thick hydrated sections. Both approaches deliver 3D nanolocalization of two or more labeled proteins within a defined tissue volume. We review sample preparation, data acquisition, analysis, and interpretation.
               
Click one of the above tabs to view related content.