Diagnosis of mitochondrial disorders is still hampered by their phenotypic and genotypic heterogeneity. In many cases, exome sequencing, the state-of-the-art method for genetically diagnosing mitochondrial disease patients, does not allow… Click to show full abstract
Diagnosis of mitochondrial disorders is still hampered by their phenotypic and genotypic heterogeneity. In many cases, exome sequencing, the state-of-the-art method for genetically diagnosing mitochondrial disease patients, does not allow direct identification of the disease-associated gene but rather results in a list of variants in candidate genes. Here, we present a method to validate the disease-causing variant based on functional complementation assays. First, cell lines expressing a wild-type cDNA of the candidate genes are generated by lentiviral infection of patient-derived fibroblasts. Next, oxidative phosphorylation is measured by the Seahorse XF analyzer to assess rescue efficiency.
               
Click one of the above tabs to view related content.