Plant-pathogen interactions involve a large number of wide regulatory systems, necessary for plant defense responses against pathogen attack. The fungal protein ethylene-inducing xylanase (EIX) elicits defense responses in specific cultivars… Click to show full abstract
Plant-pathogen interactions involve a large number of wide regulatory systems, necessary for plant defense responses against pathogen attack. The fungal protein ethylene-inducing xylanase (EIX) elicits defense responses in specific cultivars of tobacco and tomato. The response to EIX is controlled by a single locus encoding for LeEIX2, a leucine-rich-repeat receptor-like-protein (LRR-RLP). As an RLP, LeEIX2 does not possess an obvious cytoplasmic signaling moiety such as a kinase domain. To study LeEIX2 mode of action, it is essential to identify the potential interactors involved after EIX perception. Here, we describe the in vivo co-IP methodology used for protein interaction verification and ethylene and ROS (reactive oxygen species) measurements used for physiological effects assessment.
               
Click one of the above tabs to view related content.