LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Sensitive Glucose Sensor Based on Organic Electrochemical Transistor with Modified Gate Electrode.

Photo by jupp from unsplash

An organic electrochemical transistor (OECT) with a glucose oxidase (GOx) and poly(n-vinyl-2-pyrrolidone)-capped platinum nanoparticles (Pt NPs) gate electrode was successfully integrated with a microfluidic channel to act as a highly… Click to show full abstract

An organic electrochemical transistor (OECT) with a glucose oxidase (GOx) and poly(n-vinyl-2-pyrrolidone)-capped platinum nanoparticles (Pt NPs) gate electrode was successfully integrated with a microfluidic channel to act as a highly sensitive chip-based glucose sensor. The sensing mechanism relies on the enzymatic reaction between glucose and GOx followed by electrochemical oxidation of hydrogen peroxide (H2O2) produced in the enzymatic reaction. This process largely increases the electrolyte potential that applies on PEDOT:PSS channel and causes more cations penetrate into PEDOT:PSS film to reduce it to semi-conducting state resulting in lower electric current between the source and the drain. The extremely high sensitivity and low detection limit (0.1 μM) of the sensor was achievable due to highly efficient Pt NPs catalysis in oxidation of H2O2. Pt NPs were deposited by a bias-free two-step dip coating method followed by a UV-Ozone post-treatment to enhance catalytic ability. A polydimethylsiloxane (PDMS) microfluidic channel was directly attached to the OECT active layer, providing a short detection time (~1 min) and extremely low analyte consumption (30 μL). Our sensor has great potential for real-time, noninvasive, and portable glucose sensing applications due to its compact size and high sensitivity.

Keywords: glucose; gate electrode; organic electrochemical; electrochemical transistor; highly sensitive; glucose sensor

Journal Title: Methods in molecular biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.