LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measuring Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo in Saccharomyces cerevisiae.

Photo from archive.org

Trinucleotide repeat (TNR) tracts are inherently unstable during DNA replication, leading to repeat expansions and/or contractions. Expanded tracts are the cause of over 40 neurodegenerative and neuromuscular diseases. In this… Click to show full abstract

Trinucleotide repeat (TNR) tracts are inherently unstable during DNA replication, leading to repeat expansions and/or contractions. Expanded tracts are the cause of over 40 neurodegenerative and neuromuscular diseases. In this chapter, we focus on the (CNG)n repeat sequences that, when expanded, lead to Huntington's disease (HD), myotonic dystrophy type 1 (DM1), and a number of other neurodegenerative diseases. We describe a series of in vivo assays, using the model system Saccharomyces cerevisiae, to determine and characterize the dynamic behavior of TNR tracts that are in the early stages of expansion, i.e., the so-called threshold range. Through a series of time courses and PCR-based assays, dynamic changes in tract length can be observed as a function of time. These assays can ultimately be used to determine how genetic factors influence the process of tract expansion in these early stages.

Keywords: saccharomyces cerevisiae; repeat; trinucleotide repeat; behavior trinucleotide; measuring dynamic; dynamic behavior

Journal Title: Methods in molecular biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.