LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification and Isolation of Novel Sugar-Like RNA Protecting Materials: Glycylglycerins from Pluripotent Stem Cells.

Photo from wikipedia

Pluripotent stem cells are a resourceful treasure box for regenerative medicine. They contain a large variety of novel materials useful for designing and developing new medicines and therapies directed against… Click to show full abstract

Pluripotent stem cells are a resourceful treasure box for regenerative medicine. They contain a large variety of novel materials useful for designing and developing new medicines and therapies directed against many aging-associated degenerative disorders, including Alzheimer's disease, Parkinson's disease, stroke, diabetes, osteoporosis, and cancers. Currently, identification of these novel stem cell-specific materials is one of major breakthroughs in the field of stem cell research. Particularly, since the discovery of induced pluripotent stem cells (iPSC) in year 2006, the methods of iPSC derivation further provide an unlimited resource for screening, isolating, and even producing theses novel stem cell-specific materials in vitro. Using iPSCs, we can now prepare high quality and quantity of pure stem cell-specific agents for testing their therapeutic functions in treating various illnesses. These newly found stem cell-specific agents are divided into four major categories, including proteins, saccharides, nucleic acids, and small molecules (chemicals). In this article, we herein disclose one of the methodologies for isolating and purifying glycylglycerins-a group of glycylated sugar alcohols that protect hairpin-like microRNA precursors (pre-miRNA) and some of tRNAs in pluripotent stem cells. In view of such a unique RNA-protecting feature, glycylglycerins may be used to preserve and deliver functional small RNAs, such as pre-miRNAs and small interfering RNAs (siRNA), into human cells for eliciting their specific RNA interference (RNAi) effects, which may greatly advance the use of RNAi technology for treating human diseases.

Keywords: rna protecting; stem cell; pluripotent stem; stem; stem cells; cell specific

Journal Title: Methods in molecular biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.