Hfq is a bacterial RNA-binding protein that plays key roles in the post-transcriptional regulation of gene expression. Like other Sm proteins, Hfq assembles into toroidal discs that bind RNAs with… Click to show full abstract
Hfq is a bacterial RNA-binding protein that plays key roles in the post-transcriptional regulation of gene expression. Like other Sm proteins, Hfq assembles into toroidal discs that bind RNAs with varying affinities and degrees of sequence specificity. By simultaneously binding to a regulatory small RNA (sRNA) and an mRNA target, Hfq hexamers facilitate productive RNA∙∙∙RNA interactions; the generic nature of this chaperone-like functionality makes Hfq a hub in many sRNA-based regulatory networks. That Hfq is crucial in diverse cellular pathways-including stress response, quorum sensing, and biofilm formation-has motivated genetic and "RNAomic" studies of its function and physiology (in vivo), as well as biochemical and structural analyses of Hfq∙∙∙RNA interactions (in vitro). Indeed, crystallographic and biophysical studies first established Hfq as a member of the phylogenetically conserved Sm superfamily. Crystallography and other biophysical methodologies enable the RNA-binding properties of Hfq to be elucidated in atomic detail, but such approaches have stringent sample requirements, viz.: reconstituting and characterizing an Hfq·RNA complex requires ample quantities of well-behaved (sufficient purity, homogeneity) specimens of Hfq and RNA (sRNA, mRNA fragments, short oligoribonucleotides, or even single nucleotides). The production of such materials is covered in this chapter, with a particular focus on recombinant Hfq proteins for crystallization experiments.
               
Click one of the above tabs to view related content.