LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Calculation of Thermodynamic Properties of Bound Water Molecules.

Photo from wikipedia

Water molecules in the binding site of a protein significantly influence protein structure and function, for example, by mediating protein-ligand interactions or in form of desolvation as driving force for… Click to show full abstract

Water molecules in the binding site of a protein significantly influence protein structure and function, for example, by mediating protein-ligand interactions or in form of desolvation as driving force for ligand binding. The knowledge about location and thermodynamic properties of water molecules in the binding site is crucial to the understanding of protein function. This chapter describes the method of calculating the location and thermodynamic properties of bound water molecules from molecular dynamics (MD) simulation trajectories. Thermodynamic profiles of water molecules can be calculated either with or without the presence of a bound ligand based on the scientific problem. The location and thermodynamic profile of hydration sites mediating the protein-ligand interactions is important for understanding protein-ligand binding. The protein desolvation free energy can be estimated for any ligand by summation of the hydration site free energies of the displaced hydration sites. The WATsite program with an easy-to-use graphical user interface (GUI) based on PyMOL was developed for those calculations and is discussed in this chapter. The WATsite program and its PyMOL plugin are available free of charge from http://people.pharmacy.purdue.edu/~mlill/software/watsite/version3.shtml .

Keywords: properties bound; thermodynamic properties; protein; water; water molecules; bound water

Journal Title: Methods in molecular biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.