Meta-analysis statistically assesses the results (e.g., effect sizes) across independent studies that are conducted in accordance with similar protocols and objectives. Current genomic meta-analysis studies do not perform extensive re-analysis on raw data… Click to show full abstract
Meta-analysis statistically assesses the results (e.g., effect sizes) across independent studies that are conducted in accordance with similar protocols and objectives. Current genomic meta-analysis studies do not perform extensive re-analysis on raw data because full data access would not be commonplace, although the best practice of open research for sharing well-formed data have been actively advocated. This chapter describes a simple and easy-to-follow method for conducting meta-analysis of multiple studies without using raw data. Examples for meta-analysis of microRNAs (miRNAs) are provided to illustrate the method. MiRNAs are potential biomarkers for early diagnosis and epigenetic monitoring of diseases. A number of miRNAs have been identified to be differentially expressed, i.e., overexpressed or underexpressed, under diseased states but only a small fraction would be highly effective biomarkers or therapeutic targets of diseases. The meta-analysis method as described in this chapter aims to identify the miRNAs that are consistently found dysregulated across independent studies as biomarkers.
               
Click one of the above tabs to view related content.