LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mouse-Derived Gastric Organoid and Immune Cell Co-culture for the Study of the Tumor Microenvironment.

Photo from wikipedia

The interaction between the receptor, programmed cell death protein 1 (PD-1) and ligand, programmed cell death 1 (PD-L1) is known to inhibit CD8+ cytotoxic T lymphocyte proliferation, survival, and effector… Click to show full abstract

The interaction between the receptor, programmed cell death protein 1 (PD-1) and ligand, programmed cell death 1 (PD-L1) is known to inhibit CD8+ cytotoxic T lymphocyte proliferation, survival, and effector function. The result of this interaction leads to evasion of immune surveillance by tumors and subsequently cancer cell proliferation. Immunotherapy via PD-L1 blockade is used for a variety of malignancies, yet the prognostic value of immune checkpoint inhibition for the treatment of gastric cancer remains controversial. Thus, preclinical models that would predict the efficacy of such therapy in a subgroup of gastric cancer patients would be an advancement in the personalized treatment of this disease. Three-dimensional organoid cultures have not only been used to investigate the mechanisms regulating development and disease, but have also been used for high-throughput drug screening for targeted personalized therapy. Here we present the methodology for the co-culture of mouse-derived gastric cancer organoids with autologous immune cells specifically for the study of PD-L1/PD-1 interactions within the tumor microenvironment in vitro.

Keywords: immune; cell; derived gastric; mouse derived; cancer; tumor microenvironment

Journal Title: Methods in molecular biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.