LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Use of Peptide Arrays for Identification and Characterization of LIR Motifs.

Photo from archive.org

The mammalian ATG8 proteins (LC3A-C/GABARAP, GABARAPL1, and GABARAPL2) are small ubiquitin-like proteins critically involved in macroautophagy. Their processed C-termini are posttranslationally conjugated to a phosphatidylethanolamine moiety, enabling their insertion into… Click to show full abstract

The mammalian ATG8 proteins (LC3A-C/GABARAP, GABARAPL1, and GABARAPL2) are small ubiquitin-like proteins critically involved in macroautophagy. Their processed C-termini are posttranslationally conjugated to a phosphatidylethanolamine moiety, enabling their insertion into the lipid bilayers of both the inner and outer membranes of the forming autophagosomes. The ATG8s bind a diverse selection of proteins including cargo receptors for selective autophagy, members of the core autophagy machinery, and other proteins involved in formation, transport, and maturation (fusion to lysosomes) of autophagosomes. Protein binding to the ATG8s is in most cases mediated by short, conserved sequence motifs known as LC3-interacting regions (LIRs). Here, we present a protocol for identifying putative LIR motifs in a whole protein sequence using peptide arrays generated by SPOT synthesis on nitrocellulose membranes. The use of two-dimensional peptide arrays allows for further identification of specific residues critical for LIR binding.

Keywords: lir; use peptide; lir motifs; arrays identification; peptide arrays

Journal Title: Methods in molecular biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.