YAP/TAZ activity is regulated by a complex network of signals that include the Hippo pathway, cell polarity complexes, and signaling receptors of the RTK, GPCR, and WNT pathways and by… Click to show full abstract
YAP/TAZ activity is regulated by a complex network of signals that include the Hippo pathway, cell polarity complexes, and signaling receptors of the RTK, GPCR, and WNT pathways and by a seamlessly expanding number of intracellular cues including energy and mevalonate metabolism. Among these inputs, we here concentrate on mechanical cues embedded in the extracellular matrix (ECM) microenvironment, which are key regulators of YAP/TAZ activity. We review the techniques that have been used to study mechano-regulation of YAP/TAZ, including conceptual and practical considerations on how these experiments should be designed and controlled. Finally, we briefly review the most appropriate techniques to monitor YAP/TAZ activity in these experiments and their significance to study the mechanisms linking YAP/TAZ to mechanical cues.
               
Click one of the above tabs to view related content.