LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of Barley Pollen Mother Cells for Confocal and Super Resolution Microscopy.

Photo from wikipedia

Recombination (crossover) drives the release of genetic diversity in plant breeding programs. However, in barley, recombination is skewed toward the telomeric ends of its seven chromosomes, restricting the re-assortment of… Click to show full abstract

Recombination (crossover) drives the release of genetic diversity in plant breeding programs. However, in barley, recombination is skewed toward the telomeric ends of its seven chromosomes, restricting the re-assortment of about 30% of the genes located in the centromeric regions of its large 5.1 Gb genome. A better understanding of meiosis and recombination could provide ways of modulating crossover distribution and frequency in barley as well as in other grasses, including wheat. While most research on recombination has been carried out in the model plant Arabidopsis thaliana, recent studies in barley (Hordeum Vulgare) have provided new insights into the control of crossing over in large genome species. A major achievement in these studies has been the use of cytological procedures to follow meiotic events. This protocol provides detailed practical steps required to perform immunostaining of barley meiocytes (pollen mother cells) for confocal or structured illumination microscopy.

Keywords: barley; microscopy; cells confocal; mother cells; recombination; pollen mother

Journal Title: Methods in molecular biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.