Drug repurposing has garnered much interest as an effective method for drug development among biopharmaceutical companies. The availability of information on complete sequences of genomes and their associated biological data,… Click to show full abstract
Drug repurposing has garnered much interest as an effective method for drug development among biopharmaceutical companies. The availability of information on complete sequences of genomes and their associated biological data, genotype-phenotype-disease relationships, and properties of small molecules offers opportunities to explore the repurpose-able potential of existing pharmacopoeia. This method gains further importance, especially, in the context of development of drugs against infectious diseases, some of which pose serious complications due to emergence of drug-resistant pathogens. In this article, we describe computational means to achieve potential repurpose-able drug candidates that may be used against infectious diseases by exploring evolutionary relationships between established targets of FDA-approved drugs and proteins of pathogen of interest.
               
Click one of the above tabs to view related content.