LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Patch-Clamp Analysis of the Mitochondrial Calcium Uniporter.

Photo by cgbriggs19 from unsplash

Mitochondria accumulate significant amounts of calcium when cytosolic calcium is elevated above the resting levels of 50-100 nM during signaling events. This calcium uptake is primarily mediated by a macromolecular protein… Click to show full abstract

Mitochondria accumulate significant amounts of calcium when cytosolic calcium is elevated above the resting levels of 50-100 nM during signaling events. This calcium uptake is primarily mediated by a macromolecular protein assembly called mitochondrial calcium uniporter (MCU) that resides in the mitochondrial inner membrane. In 2004, we applied patch-clamp technique for the first time to record calcium currents from the mitochondrial inner membrane and proved unequivocally that MCU is a highly selective calcium channel. This chapter describes how patch-clamp technique can be applied to record the Ca2+ uniporter currents from the mitochondrial inner membrane, isolation of mitochondria from the heart tissue, and preparation of mitoplast using French Press. We also discuss advantages of patch-clamp technique as compared to other methods of determining mitochondrial uniporter activity and important considerations in applying patch-clamp technique to such a small subcellular organelle. With small variations in the bath and pipette solution composition, the same methodology can be applied to study any other currents (e.g., H+ or Cl-) from the mitochondrial inner membrane.

Keywords: calcium; calcium uniporter; patch clamp; mitochondrial calcium

Journal Title: Methods in molecular biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.