Nuclear magnetic resonance (NMR) spectroscopy is an established analytical platform for analyzing metabolic profiles of cells, tissues, and body fluids. There are several advantages in introducing an NMR-based study design… Click to show full abstract
Nuclear magnetic resonance (NMR) spectroscopy is an established analytical platform for analyzing metabolic profiles of cells, tissues, and body fluids. There are several advantages in introducing an NMR-based study design into metabolomics studies, including a fast and comprehensive detection, characterization, and quantification of dozens of endogenous metabolites in a single NMR spectrum. Quantitative proton 1H-NMR is the most useful NMR-based platform for metabolomics. The frozen tissues can be analyzed noninvasively using a high-resolution magic angle spinning (HR-MAS) 1H-NMR spectroscopy; or several extraction techniques can be applied to detect additional metabolites using a conventional liquid-based NMR technique. In this chapter, we report on tissue collection, handling, extraction methods, and 1H-NMR acquisition protocols developed in the past decades for a precise and quantitative NMR-metabolomics approach. The NMR acquisition protocols (both HR-MAS and conventional 1H-NMR spectroscopy) and spectral analysis steps are also presented. Since NMR can be applied "in vivo" using horizontal bore MRI scanners, several in vivo sequences for localized 1H-MRS (magnetic resonance spectroscopy) are presented which can be directly applied for noninvasive detection of brain metabolites.
               
Click one of the above tabs to view related content.