LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measurement of Inner Bark and Leaf Osmolality.

Photo by judowoodo_ from unsplash

Sugar transport in the phloem is driven by turgor pressure gradients which are created by osmotic gradients resulting from sugars loaded to the phloem at the source tissue and unloaded… Click to show full abstract

Sugar transport in the phloem is driven by turgor pressure gradients which are created by osmotic gradients resulting from sugars loaded to the phloem at the source tissue and unloaded at the sink tissue. Therefore, osmolality is a key parameter that can be used to evaluate sugar status and get an indication of the driving force for phloem transport. Here we describe how osmotic concentration measurements from inner bark (practically, the phloem) and needles of trees can be measured. This protocol presents the procedure used by Lintunen et al. (Front Plant Sci 7:726, 2016) and Paljakka et al. (Plant Cell Environ 40:2160-2173, 2017), extended by practical advice and discussion of potential errors and caveats. We describe how to implement this procedure for gymnosperm as well as angiosperm trees. This method uses mechanical sap extraction with a centrifuge from inner bark and leaf samples, which have gone through a deep freeze treatment and thawing. The osmotic potential of these samples is then analyzed with a freezing point or vapor pressure osmometer. The aim of these measurements is to study the spatial and temporal dynamics of phloem function.

Keywords: bark; osmolality; inner bark; bark leaf

Journal Title: Methods in molecular biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.