LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Machine Learning to Predict Binding Affinity.

Photo by hajjidirir from unsplash

Recent progress in the development of scientific libraries with machine-learning techniques paved the way for the implementation of integrated computational tools to predict ligand-binding affinity. The prediction of binding affinity… Click to show full abstract

Recent progress in the development of scientific libraries with machine-learning techniques paved the way for the implementation of integrated computational tools to predict ligand-binding affinity. The prediction of binding affinity uses the atomic coordinates of protein-ligand complexes. These new computational tools made application of a broad spectrum of machine-learning techniques to study protein-ligand interactions possible. The essential aspect of these machine-learning approaches is to train a new computational model by using technologies such as supervised machine-learning techniques, convolutional neural network, and random forest to mention the most commonly applied methods. In this chapter, we focus on supervised machine-learning techniques and their applications in the development of protein-targeted scoring functions for the prediction of binding affinity. We discuss the development of the program SAnDReS and its application to the creation of machine-learning models to predict inhibition of cyclin-dependent kinase and HIV-1 protease. Moreover, we describe the scoring function space, and how to use it to explain the development of targeted scoring functions.

Keywords: machine; machine learning; learning techniques; binding affinity; development

Journal Title: Methods in molecular biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.