LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Contour Models of Cellular Adhesion.

Photo by googledeepmind from unsplash

The development of traction-force microscopy, in the past two decades, has created the unprecedented opportunity of performing direct mechanical measurements on living cells as they adhere or crawl on uniform… Click to show full abstract

The development of traction-force microscopy, in the past two decades, has created the unprecedented opportunity of performing direct mechanical measurements on living cells as they adhere or crawl on uniform or micro-patterned substrates. Simultaneously, this has created the demand for a theoretical framework able to decipher the experimental observations, shed light on the complex biomechanical processes that govern the interaction between the cell and the extracellular matrix and offer testable predictions. Contour models of cellular adhesion, represent one of the simplest and yet most insightful approach in this problem. Rooted in the paradigm of active matter, these models allow to explicitly determine the shape of the cell edge and calculate the traction forces experienced by the substrate, starting from the internal and peripheral contractile stresses as well as the passive restoring forces and bending moments arising within the actin cortex and the plasma membrane. In this chapter I provide a general overview of contour models of cellular adhesion and review the specific cases of cells equipped with isotropic and anisotropic actin cytoskeleton as well as the role of bending elasticity.

Keywords: cellular adhesion; contour models; models cellular; microscopy

Journal Title: Advances in experimental medicine and biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.