Field and vegetable crops are primary source of food. Field crops are also a rich source of cellulosic biomass and carbohydrates for biofuels. One of the major challenges facing agriculture… Click to show full abstract
Field and vegetable crops are primary source of food. Field crops are also a rich source of cellulosic biomass and carbohydrates for biofuels. One of the major challenges facing agriculture today is improving the productivity of crops in an environmentally sustainable manner. Annual climate variation causes temperature extremes, floods, and droughts which all exacerbate the vulnerability of crops to pests and diseases. Conventional plant breeding has evolved and molecular and modern breeding methods have enhanced the pace of crop improvement work. Plant breeders now use molecular and genetic techniques to selectively identify phenotypes and genotypes that are associated with traits of interest. Such functional genomics studies help plant breeders efficiently utilize the germplasm. Cutting edge molecular tools are now available in economically important crops as well as model plant systems. Gene expression techniques have been combined with forward and reverse genetic methods for isolation and introgression of desirable alleles into breeding populations that are used to develop hybrid crops. This chapter focuses on modern techniques and resources that field and vegetable crop scientists use to generate genetic information and efficient breeding strategies.
               
Click one of the above tabs to view related content.