LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Can GPCRs Be Targeted to Control Inflammation in Asthma?

Photo from wikipedia

Historically, the drugs used to manage obstructive lung diseases (OLDs), asthma, and chronic obstructive pulmonary disease (COPD) either (1) directly regulate airway contraction by blocking or relaxing airway smooth muscle… Click to show full abstract

Historically, the drugs used to manage obstructive lung diseases (OLDs), asthma, and chronic obstructive pulmonary disease (COPD) either (1) directly regulate airway contraction by blocking or relaxing airway smooth muscle (ASM) contraction or (2) indirectly regulate ASM contraction by inhibiting the principal cause of ASM contraction/bronchoconstriction and airway inflammation. To date, these tasks have been respectively assigned to two diverse drug types: agonists/antagonists of G protein-coupled receptors (GPCRs) and inhaled or systemic steroids. These two types of drugs "stay in their lane" with respect to their actions and consequently require the addition of the other drug to effectively manage both inflammation and bronchoconstriction in OLDs. Indeed, it has been speculated that safety issues historically associated with beta-agonist use (beta-agonists activate the beta-2-adrenoceptor (β2AR) on airway smooth muscle (ASM) to provide bronchoprotection/bronchorelaxation) are a function of pro-inflammatory actions of β2AR agonism. Recently, however, previously unappreciated roles of various GPCRs on ASM contractility and on airway inflammation have been elucidated, raising the possibility that novel GPCR ligands targeting these GPCRs can be developed as anti-inflammatory therapeutics. Moreover, we now know that many GPCRs can be "tuned" and not just turned "off" or "on" to specifically activate the beneficial therapeutic signaling a receptor can transduce while avoiding detrimental signaling. Thus, the fledging field of biased agonism pharmacology has the potential to turn the β2AR into an anti-inflammatory facilitator in asthma, possibly reducing or eliminating the need for steroids.

Keywords: asm; gpcrs targeted; asm contraction; inflammation

Journal Title: Advances in experimental medicine and biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.