The main agent of human malaria, the protozoa, Plasmodium falciparum is known to infect liver cells, subsequently invading the host erythrocyte, leading to the manifestation of clinical outcomes of the… Click to show full abstract
The main agent of human malaria, the protozoa, Plasmodium falciparum is known to infect liver cells, subsequently invading the host erythrocyte, leading to the manifestation of clinical outcomes of the disease. As part of its survival in the human host, P. falciparum employs several heat shock protein (Hsp) families whose primary purpose is to ensure cytoprotection through their molecular chaperone role. The parasite expresses six Hsp70s that localise to various subcellular organelles of the parasite, with one, PfHsp70-x, being exported to the infected human erythrocyte. The role of these Hsp70s in the survival and pathogenicity of malaria has received immense research attention. Several studies have reported on their structure-function features, network partnerships, and elucidation of their potential substrates. Apart from their role in cytoprotection and pathogenicity, Hsp70s are implicated in antimalarial drug resistance. As such, they are deemed potential antimalarial drug candidates, especially suited for co-targeting in combination therapies. In addition, Hsp70 is implicated in host immune modulation. The current report highlights the various structure-function features of these proteins, their roles in the development of malaria, current and prospective efforts being employed towards targeting them in malaria intervention efforts.
               
Click one of the above tabs to view related content.