LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spinocerebellar Ataxia Type 1: Molecular Mechanisms of Neurodegeneration and Preclinical Studies.

Photo from wikipedia

Spinocerebellar ataxia type 1 (SCA1) is an adult-onset, inherited disease that leads to degeneration of Purkinje cells of the cerebellum and culminates in death 10-30 years after disease onset. SCA1 is… Click to show full abstract

Spinocerebellar ataxia type 1 (SCA1) is an adult-onset, inherited disease that leads to degeneration of Purkinje cells of the cerebellum and culminates in death 10-30 years after disease onset. SCA1 is caused by a CAG repeat mutation in the ATXN1 gene, encoding the ATXN1 protein with an abnormally expanded polyglutamine tract. As neurodegeneration progresses, other brain regions become involved and contribute to cognitive deficits as well as problems with speech, swallowing, and control of breathing. The fundamental basis of pathology is an aberration in the normal function of Purkinje cells affecting regulation of gene transcription and RNA splicing. Glutamine-expanded ATXN1 is highly stable and more resistant to degradation. Moreover, phosphorylation at S776 in ATXN1 is a post-translational modification known to influence protein levels. SCA1 remains an untreatable disease managed only by palliative care. Preclinical studies are founded on the principle that mutant protein load is toxic and attenuating ATXN1 protein levels can alleviate disease. Two approaches being pursued are targeting gene expression or protein levels. Viral delivery of miRNAs harnesses the RNAi pathway to destroy ATXN1 mRNA. This approach shows promise in mouse models of disease. At the protein level, kinase inhibitors that block ATXN1-S776 phosphorylation may lead to therapeutic clearance of unphosphorylated ATXN1.

Keywords: protein; ataxia type; spinocerebellar ataxia; preclinical studies; protein levels; type molecular

Journal Title: Advances in experimental medicine and biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.