Prevalence of diabetes mellitus (DM), a multifactorial disease often diagnosed with high blood glucose levels, is rapidly increasing in the world. Association of DM with multi-organ dysfunction including cardiomyopathy makes… Click to show full abstract
Prevalence of diabetes mellitus (DM), a multifactorial disease often diagnosed with high blood glucose levels, is rapidly increasing in the world. Association of DM with multi-organ dysfunction including cardiomyopathy makes it a leading cause of morbidity and mortality. There are two major types of DM: type 1 DM (T1D) and type 2 DM (T2D). T1D is diagnosed by reduced levels of insulin and high levels of glucose in the blood. It is caused due to pancreatic beta cell destruction/loss, and mostly found in juveniles (juvenile DM). T2D is diagnosed by increased levels of insulin and glucose in the blood. It is caused due to insulin receptor dysfunction, and mostly found in the adults (adult DM). Both T1D and T2D impair cardiac muscle function, which is referred to as diabetic cardiomyopathy. We and others have reported that miRNAs, a novel class of tiny non-coding regulatory RNAs, are differentially expressed in the diabetic heart and they contribute to diabetic cardiomyopathy. Here, we elaborated the biogenesis of miRNA, how miRNA regulates a gene, cardioprotective roles of different miRNAs including miRNAs present in exosomes, underlying molecular mechanisms by which miRNA ameliorates diabetic cardiomyopathy, and the role of miRNA as a potential therapeutic target for juvenile and adult diabetic cardiomyopathy.
               
Click one of the above tabs to view related content.