Musculoskeletal conditions have been defined by European National Health systems as one of the key themes which should be featured during the present decade as a consequence of the significant… Click to show full abstract
Musculoskeletal conditions have been defined by European National Health systems as one of the key themes which should be featured during the present decade as a consequence of the significant healthcare and social support costs. Among others, articular cartilage degeneration due to traumatic and degenerative lesion injury or other pathologies commonly results in the development of musculoskeletal disorders such as osteoarthritis and arthritis rheumatoid, eventually leading to progressive articular cartilage and joint destruction especially at osteochondral interphase, that account for more disability among the elderly than any other diseases constituting a global social challenge that needs a multidisciplinary response from the scientific community. Current treatments for damaged osteoarthritic joint cartilage include the use of disease-modifying drugs and ultimately joint arthroplasty as unavoidable surgical intervention due to the limited ability of articular cartilage to self-regenerate. However, potential future regenerative therapies based on tissue engineering strategies are likely to become more important to facilitate the recruitment of repairing cells and improve musculoskeletal metabolism. In addition, emerging bioprinting technologies in combination with implemented manufacturing techniques such electrospinning or cryogelation processes have permitted the development of new tissue substitutes with precise control of sizes and shapes to recreate the complex physiological, biomechanical and hieratical microstructure of osteochondral interphases. Thus, this chapter will provide an upgrade on the state of the art focusing the most relevant developments on polymer scaffolds and drug delivery systems for osteochondral regeneration.
               
Click one of the above tabs to view related content.