LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vascular Intervention: From Angioplasty to Bioresorbable Vascular Scaffold.

Photo from archive.org

Coronary artery disease (CAD) is the leading cause of mortality and morbidity worldwide. Clinically, CAD can be potentially managed through surgical artery bypass. However, due to the highly invasive nature,… Click to show full abstract

Coronary artery disease (CAD) is the leading cause of mortality and morbidity worldwide. Clinically, CAD can be potentially managed through surgical artery bypass. However, due to the highly invasive nature, surgical intervention has been gradually replaced by percutaneous transluminal coronary angioplasty and recently by percutaneous coronary revascularization using metallic stents. However, the permanent presence of metallic scaffolds inevitably impairs arterial physiology and may induce a variety of adverse effects, such as inflammation, restenosis, thrombosis, and neoatherosclerosis. To address these limitations, revascularization using bioresorbable vascular scaffolds (BVSs) has emerged as the most promising approach. After angioplasty, BVSs provide temporarily mechanical support and are completely resorbed over defined time. This transient nature allows favorable arterial remodeling and avoids thrombosis and in-stent restenosis. However, the theoretical advantages of BVSs have yet to be demonstrated. In this chapter, we first review the evolution of nonsurgical vascular intervention approaches over the past few decades. Next, we discuss the current status of BVS development and propose potential approaches to addressing the limitations associated with the current BVSs.

Keywords: intervention; angioplasty bioresorbable; vascular intervention; bioresorbable vascular; intervention angioplasty

Journal Title: Advances in experimental medicine and biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.