LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Taurine on Alterations of Neurobehavior and Neurodevelopment Key Proteins Expression in Infant Rats by Exposure to Hexabromocyclododecane.

Photo from wikipedia

Hexabromocyclododecanes (HBCDs) is a widely used flame retardant. Studies have found that HBCDs has toxic effects on endocrine and neural development, leading to adverse effects on behavior, learning and memory.… Click to show full abstract

Hexabromocyclododecanes (HBCDs) is a widely used flame retardant. Studies have found that HBCDs has toxic effects on endocrine and neural development, leading to adverse effects on behavior, learning and memory. This study aimed to investigate the protective effects of taurine on cognitive function, neurotrophic factors expression of infant rats exposured to HBCDs. Sprague-Dawley rats of 10-days old were oral gavaged of different doses (0.3, 3 and 30 mg/kg) of HBCDs and 30 mg/kg HBCDs with 300 mg/kg taurine for 60 consecutive days. Rat cognitive function was detected by the method of Morris water maze test. The protein expressions of brain derived neurotrophic factor (BDNF), nerve growth factor (NGF) and fibroblast growth factor (FGF) were assayed by Western-blotting. Results showed that rats exposed to HBCDs significantly declined rats spatial learning and memory ability by increasing the latency time of seeking the platform (P < 0.05), decreasing the numbers that each rat had crossed the non-exits and the time spent in the target quadrant as compared with those in control rats (P < 0.05). Taurine treatment significantly reversed the effects of HBCDs. Western-blotting results showed that expression of BDNF, NGF and FGF proteins in the low dose group were obviously increased compared with those in control rats (P < 0.01), and middle-dose and high dose groups significantly decreased. Taurine treatment increased BDNF and NGF expression as compared with high dose groups while Taurine seemed to have no effects on FGF. These result suggested that higher doses of HBCDs early exposure in the developing rats could decrease neurotrophic factors including BDNF, NGF, FGF, which have an impact on neural development, damage on learning and memory.

Keywords: effects taurine; infant rats; learning memory; bdnf ngf; taurine alterations; expression infant

Journal Title: Advances in experimental medicine and biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.