LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discovery of Potent Non-nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from Fragment Screening and Structure-Guided Design.

Photo from wikipedia

Flavivirus NS5 RNA-dependent RNA polymerase (RdRp) is an important drug target. Whilst a number of allosteric inhibitors have been described for Hepatitis C virus RdRp, few have been described for… Click to show full abstract

Flavivirus NS5 RNA-dependent RNA polymerase (RdRp) is an important drug target. Whilst a number of allosteric inhibitors have been described for Hepatitis C virus RdRp, few have been described for DENV RdRp. In addition, compound screening campaigns have not yielded suitable leads for this enzyme. Using fragment-based screening via X-ray crystallography, we identified a biphenyl acetic acid fragment that binds to a novel pocket of the dengue virus (DENV) RdRp, in the thumb/palm interface, close to its active site (termed "N pocket"). Structure-guided optimization yielded nanomolar inhibitors of the RdRp de novo initiation activity, with low micromolar EC50 in DENV cell-based assays. Compound-resistant DENV replicons exhibited amino acid mutations that mapped to the N pocket. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors and provides a significant opportunity for rational design of novel therapeutics against this proven antiviral target.

Keywords: rna dependent; rna; structure guided; rna polymerase; dependent rna

Journal Title: Advances in experimental medicine and biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.