LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Genetic Basis of Reporter Mouse Strains.

Photo from archive.org

Genetically engineered mouse (GEM) models have been revolutionizing the biomedical studies on deciphering the physiological roles of genes in vivo. In addition to deactivating a gene in mice, diverse strategies… Click to show full abstract

Genetically engineered mouse (GEM) models have been revolutionizing the biomedical studies on deciphering the physiological roles of genes in vivo. In addition to deactivating a gene in mice, diverse strategies have been created to monitor gene expressions and molecular dynamics of specific proteins in vivo. Although gene targeting in mouse embryonic stem (ES) cells was essential for the precise engineering of the mouse genome over almost three decades, this process is a time-consuming, expensive, and laborious one. These days, new technologies that directly apply engineered endonucleases, such as zinc-finger nucleases (ZFNs), Transcription Activator-Like Effector (TALE) Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, into the mouse zygotes are enabling us to rapidly replace conventional gene targeting in mouse ES cells. In this chapter, we will describe the principles of reporter mouse strains and the recent advances in generating them using engineered endonucleases.

Keywords: reporter mouse; genetic basis; mouse strains; basis reporter; gene; mouse

Journal Title: Advances in experimental medicine and biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.