LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-Abelian electric field correlator at NLO for dark matter relic abundance and quarkonium transport

Photo from wikipedia

We perform a complete next-to-leading order calculation of the non-Abelian electric field correlator in a SU( N c ) plasma, which encodes properties of the plasma relevant for heavy particle… Click to show full abstract

We perform a complete next-to-leading order calculation of the non-Abelian electric field correlator in a SU( N c ) plasma, which encodes properties of the plasma relevant for heavy particle bound state formation and dissociation, and is different from the correlator for the heavy quark diffusion coefficient. The calculation is carried out in the real-time formalism of thermal field theory and includes both vacuum and finite temperature contributions. By working in the R ΞΎ gauge, we explicitly show the results are gauge independent, infrared and collinear safe. The renormalization group equation of this electric field correlator is determined by that of the strong coupling constant. Our next-to-leading order calculation can be directly applied to any dipole singlet-adjoint transition of heavy particle pairs. For example, it can be used to describe dissociation and (re)generation of heavy quarkonia inside the quark-gluon plasma well below the melting temperature, as well as heavy dark matter pairs (or charged co-annihilating partners) in the early universe.

Keywords: field; field correlator; non abelian; electric field; abelian electric; correlator

Journal Title: Journal of High Energy Physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.