LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A theory of reparameterizations for AdS3 gravity

Photo by markwilliamspics from unsplash

A bstractWe rewrite the Chern-Simons description of pure gravity on global AdS3 and on Euclidean BTZ black holes as a quantum field theory on the AdS boundary. The resulting theory… Click to show full abstract

A bstractWe rewrite the Chern-Simons description of pure gravity on global AdS3 and on Euclidean BTZ black holes as a quantum field theory on the AdS boundary. The resulting theory is (two copies of) the path integral quantization of a certain coadjoint orbit of the Virasoro group, and it should be regarded as the quantum field theory of the boundary gravitons. This theory respects all of the conformal field theory axioms except one: it is not modular invariant. The coupling constant is 1/c with c the central charge, and perturbation theory in 1/c encodes loop contributions in the gravity dual. The QFT is a theory of reparametrizations analogous to the Schwarzian description of nearly AdS2 gravity, and has several features including: (i) it is ultraviolet-complete; (ii) the torus partition function is the vacuum Virasoro character, which is one-loop exact by a localization argument; (iii) it reduces to the Schwarzian theory upon compactification; (iv) it provides a powerful new tool for computing Virasoro blocks at large c via a diagrammatic expansion. We use the theory to compute several observables to one-loop order in the bulk, including the “heavy-light” limit of the identity block. We also work out some generalizations of this theory, including the boundary theory which describes fluctuations around two-sided eternal black holes.

Keywords: theory reparameterizations; theory; ads3 gravity; gravity; reparameterizations ads3; field theory

Journal Title: Journal of High Energy Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.