LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chiral anomaly, Schwinger effect, Euler-Heisenberg Lagrangian and application to axion inflation

Photo by austriannationallibrary from unsplash

Particle production in strong electromagnetic fields is a recurring theme in solid state physics, heavy ion collisions, early universe cosmology and formal quantum field theory. In this paper we discuss… Click to show full abstract

Particle production in strong electromagnetic fields is a recurring theme in solid state physics, heavy ion collisions, early universe cosmology and formal quantum field theory. In this paper we discuss the Dirac equation in a background of parallel electric and magnetic fields. We review the Schwinger particle production rate, clarify the emergence of the chiral anomaly equation and compute the induced current of charged fermions. We distinguish the contributions from non-perturbative particle production, from the running of the gauge coupling constant and from non-linearities in the effective QED Lagrangian, and clarify how these contributions arise within a single framework. We apply these results to axion inflation. A Chern-Simons coupling between the pseudoscalar particle driving cosmic inflaton and an abelian gauge group induces a dual production of gauge fields and charged fermions. We show that the resulting scalar and gravitational wave power spectra strongly depend on the fermion mass.

Keywords: physics; axion inflation; production; chiral anomaly; particle

Journal Title: Journal of High Energy Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.