LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Source terms for electroweak baryogenesis in the vev-insertion approximation beyond leading order

Photo by yanots from unsplash

In electroweak baryogenesis the baryon asymmetry of the universe is created during the electroweak phase transition. The quantum transport equations governing the dynamics of the plasma particles can be derived… Click to show full abstract

In electroweak baryogenesis the baryon asymmetry of the universe is created during the electroweak phase transition. The quantum transport equations governing the dynamics of the plasma particles can be derived in the vev-insertion approximation, which treats the vev-dependent part of the particle masses as a perturbation. We calculate the next-to-leading order (NLO) contribution to the CP-violating source term and CP-conserving relaxation rate, corresponding to Feynman diagrams for the self-energies with four mass insertions. We consider both a pair of Weyl fermions and a pair of complex scalars, that scatter off the bubble wall. We find: (i) The NLO correction becomes large for O $$ \mathcal{O} $$ (1) couplings. If only the Standard Model (SM) Higgs obtains a vev during the phase transition, this implies the vev-insertion approximation breaks down for top quarks. (ii) The resonant enhancement of the source term and relaxation rate, that exists at leading order in the limit of degenerate thermal masses for the fermions/scalars, persists at NLO.

Keywords: vev insertion; insertion approximation; leading order

Journal Title: Journal of High Energy Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.