Abstract Axion-like particles (ALPs) interacting with the Standard Model can be abundantly produced in proton beam fixed-target experiments. Looking for their displaced decays is therefore an effective search strategy for… Click to show full abstract
Abstract Axion-like particles (ALPs) interacting with the Standard Model can be abundantly produced in proton beam fixed-target experiments. Looking for their displaced decays is therefore an effective search strategy for ALPs with a mass in the MeV to GeV range. Focusing on the benchmark models where the ALP interacts dominantly with photons or gluons, we show that the proposed DarkQuest experiment at Fermilab will be able to test parameter space which has been previously inaccessible. We pay particular attention to the self-consistency of gluon-coupled ALP production and decay calculations, which has been recently shown to be a problem in many existing predictions. We also apply these results to explore existing constraints in the ALP parameter space.
               
Click one of the above tabs to view related content.