LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Holographic complexity of quantum black holes

Photo from wikipedia

We analyze different holographic complexity proposals for black holes that include corrections from bulk quantum fields. The specific setup is the quantum BTZ black hole, which encompasses in an exact… Click to show full abstract

We analyze different holographic complexity proposals for black holes that include corrections from bulk quantum fields. The specific setup is the quantum BTZ black hole, which encompasses in an exact manner the effects of conformal fields with large central charge in the presence of the black hole, including the backreaction corrections to the BTZ metric. Our results show that Volume Complexity admits a consistent quantum expansion and correctly reproduces known limits. On the other hand, the generalized Action Complexity picks up large contributions from the singularity, which is modified due to quantum backreaction, with the result that Action Complexity does not reproduce the expected classical limit. Furthermore, we show that the doubly-holographic setup allows computing the complexity coming purely from quantum fields — a notion that has proven evasive in usual holographic setups. We find that in holographic induced-gravity scenarios the complexity of quantum fields in a black hole background vanishes to leading order in the gravitational strength of CFT effects.

Keywords: complexity quantum; black holes; complexity; quantum fields; holographic complexity; quantum

Journal Title: Journal of High Energy Physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.