LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Symmetries of abelian Chern-Simons theories and arithmetic

Photo by bmschell from unsplash

Abstract We determine the unitary and anti-unitary Lagrangian and quantum symmetries of arbitrary abelian Chern-Simons theories. The symmetries depend sensitively on the arithmetic properties (e.g. prime factorization) of the matrix… Click to show full abstract

Abstract We determine the unitary and anti-unitary Lagrangian and quantum symmetries of arbitrary abelian Chern-Simons theories. The symmetries depend sensitively on the arithmetic properties (e.g. prime factorization) of the matrix of Chern-Simons levels, revealing interesting connections with number theory. We give a complete characterization of the symmetries of abelian topological field theories and along the way find many theories that are non-trivially time-reversal invariant by virtue of a quantum symmetry, including U(1)k Chern-Simons theory and (ℤk)ℓ gauge theories. For example, we prove that U(1)k Chern-Simons theory is time-reversal invariant if and only if −1 is a quadratic residue modulo k, which happens if and only if all the prime factors of k are Pythagorean (i.e., of the form 4n + 1), or Pythagorean with a single additional factor of 2. Many distinct non-abelian finite symmetry groups are found.

Keywords: simons theories; abelian chern; chern simons; theories arithmetic; symmetries abelian

Journal Title: Journal of High Energy Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.