LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SU(2/1) superchiral self-duality: a new quantum, algebraic and geometric paradigm to describe the electroweak interactions

Photo by robertbye from unsplash

We propose an extension of the Yang-Mills paradigm from Lie algebras to internal chiral superalgebras. We replace the Lie algebra-valued connection one-form A, by a superalgebra-valued polyform $$ \tilde{A} $$… Click to show full abstract

We propose an extension of the Yang-Mills paradigm from Lie algebras to internal chiral superalgebras. We replace the Lie algebra-valued connection one-form A, by a superalgebra-valued polyform $$ \tilde{A} $$ mixing exterior-forms of all degrees and satisfying the chiral self-duality condition $$ \tilde{A} =^{\ast }{\tilde{A}}_{\chi } $$ , where χ denotes the superalgebra grading operator. This superconnection contains Yang-Mills vectors valued in the even Lie subalgebra, together with scalars and self-dual tensors valued in the odd module, all coupling only to the charge parity CP-positive Fermions. The Fermion quantum loops then induce the usual Yang-Mills-scalar Lagrangian, the self-dual Avdeev-Chizhov propagator of the tensors, plus a new vector-scalar-tensor vertex and several quartic terms which match the geometric definition of the supercurvature. Applied to the SU(2/1) Lie-Kac simple superalgebra, which naturally classifies all the elementary particles, the resulting quantum field theory is anomaly-free and the interactions are governed by the super-Killing metric and by the structure constants of the superalgebra.

Keywords: duality new; quantum; yang mills; new quantum; self duality; superchiral self

Journal Title: Journal of High Energy Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.