LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Time evolution of the complexity in chaotic systems: a concrete example

Photo by jontyson from unsplash

We investigate the time evolution of the complexity of the operator by the Sachdev-Ye-Kitaev (SYK) model with N Majorana fermions. We follow Nielsen’s idea of complexity geometry and geodesics thereof.… Click to show full abstract

We investigate the time evolution of the complexity of the operator by the Sachdev-Ye-Kitaev (SYK) model with N Majorana fermions. We follow Nielsen’s idea of complexity geometry and geodesics thereof. We show that it is possible that the bi- invariant complexity geometry can exhibit the conjectured time evolution of the complexity in chaotic systems: i) linear growth until t ∼ e N , ii) saturation and small fluctuations after then. We also show that the Lloyd’s bound is realized in this model. Interestingly, these characteristic features appear only if the complexity geometry is the most natural “non-Riemannian” Finsler geometry. This serves as a concrete example showing that the bi-invariant complexity may be a competitive candidate for the complexity in quantum mechanics/field theory (QM/QFT). We provide another argument showing a naturalness of bi-invariant complexity in QM/QFT. That is that the bi-invariance naturally implies the equivalence of the right-invariant complexity and left-invariant complexity, either of which may correspond to the complexity of a given operator. Without bi-invariance, one needs to answer why only right (left) invariant complexity corresponds to the “complexity”, instead of only left (right) invariant complexity.

Keywords: geometry; time evolution; complexity; invariant complexity; evolution complexity

Journal Title: Journal of High Energy Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.