LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Building flat space-time from information exchange between quantum fluctuations

Photo by joelfilip from unsplash

Abstract We consider a hypothesis in which classical space-time emerges from information exchange (interactions) between quantum fluctuations in the gravity theory. In this picture, a line element would arise as… Click to show full abstract

Abstract We consider a hypothesis in which classical space-time emerges from information exchange (interactions) between quantum fluctuations in the gravity theory. In this picture, a line element would arise as a statistical average of how frequently particles interact, through an individual rate dt ∼ 1/f t and spatially interconnecting rates dl ∼ c/f . The question is if space-time can be modelled consistently in this way. The ansatz would be opposite to the standard treatment of space-time as insensitive to altered physics at event horizons (disrupted propagation of information) but by extension relate to the connection of space-time to entanglement (interactions) through the gauge/gravity duality. We make a first, rough analysis of the implications this type of quantization would have on the classical structure of flat space-time, and of what would be required of the interactions. Seeing no obvious reason for why the origin would be unrealistic, we comment on expected effects in the presence of curvature.

Keywords: information exchange; quantum fluctuations; space time; space

Journal Title: Journal of High Energy Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.