LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Partition functions of Chern-Simons theory on handlebodies by radial quantization

Photo from wikipedia

Abstract We use radial quantization to compute Chern-Simons partition functions on handlebodies of arbitrary genus. The partition function is given by a particular transition amplitude between two states which are… Click to show full abstract

Abstract We use radial quantization to compute Chern-Simons partition functions on handlebodies of arbitrary genus. The partition function is given by a particular transition amplitude between two states which are defined on the Riemann surfaces that define the (singular) foliation of the handlebody. The final state is a coherent state while on the initial state the holonomy operator has zero eigenvalue. The latter choice encodes the constraint that the gauge fields must be regular everywhere inside the handlebody. By requiring that the only singularities of the gauge field inside the handlebody must be compatible with Wilson loop insertions, we find that the Wilson loop shifts the holonomy of the initial state. Together with an appropriate choice of normalization, this procedure selects a unique state in the Hilbert space obtained from a Kähler quantization of the theory on the constant-radius Riemann surfaces. Radial quantization allows us to find the partition functions of Abelian Chern-Simons theories for handlebodies of arbitrary genus. For non-Abelian compact gauge groups, we show that our method reproduces the known partition function at genus one.

Keywords: partition; chern simons; partition functions; quantization; state; radial quantization

Journal Title: Journal of High Energy Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.