LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamical origin of fermion bulk masses in a warped extra dimension

Photo by isiparente from unsplash

Abstract Extensions of the Standard Model featuring a warped extra dimension compactified on an S 1/ℤ2 orbifold, in which the fermions and gauge bosons live in the bulk of the… Click to show full abstract

Abstract Extensions of the Standard Model featuring a warped extra dimension compactified on an S 1/ℤ2 orbifold, in which the fermions and gauge bosons live in the bulk of the fifth dimension, offer one of the most compelling mechanisms for addressing both the hierarchy problem and the flavor puzzle of the Standard Model. However, the five-dimensional mass terms of bulk fermions must be odd functions on the orbifold, and as such they should be described by a field depending on the coordinate of the extra dimension. We demonstrate the feasibility of dynamically generating these fermion bulk masses with a bulk scalar field in warped extra dimensions. The bulk scalar acquires a vacuum expectation value, which is odd under the orbifold symmetry and gives rise to the fermion bulk masses through non-universal Yukawa-like interactions. Like in the conventional Randall-Sundrum setup, the localization of the different fermion zero modes along the extra dimension naturally explains the observed flavor structure and four-dimensional mass hierarchy of the SM fermions. We study the phenomenological implications of the backreaction on the metric and the modified fermion profiles due to the bulk scalar field on electroweak precision and flavor observables. Using up-to-date data, we show that the contributions to the S, T, and ϵ K parameters require the mass of the first Kaluza-Klein gluon resonance to be of order 14 and 10 TeV in the minimal and the custodial model, respectively, regardless of the effect of the backreaction. Furthermore, effective flavor-changing interactions among the SM fermions induced by the bulk scalar are discussed. We also comment on the potential impact of the Higgs portal interaction of the bulk scalar on the couplings of the Higgs boson.

Keywords: warped extra; fermion bulk; bulk; extra dimension; dimension

Journal Title: Journal of High Energy Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.