LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The holographic dual of Rényi relative entropy

Photo by martinadams from unsplash

Abstract The relative entropy is a measure of the distinguishability of two quantum states. A great deal of progress has been made in the study of the relative entropy between… Click to show full abstract

Abstract The relative entropy is a measure of the distinguishability of two quantum states. A great deal of progress has been made in the study of the relative entropy between an excited state and the vacuum state of a conformal field theory (CFT) reduced to a spherical region. For example, when the excited state is a small perturbation of the vacuum state, the relative entropy is known to have a universal expression for all CFT’s [1]. Specifically, the perturbative relative entropy can be written as the symplectic flux of a certain scalar field in an auxiliary AdS-Rindler spacetime [1]. Moreover, if the CFT has a semi-classical holographic dual, the relative entropy is known to be related to conserved charges in the bulk dual spacetime [2]. In this paper, we introduce a one-parameter generalization of the relative entropy which we call refined Rényi relative entropy. We study this quantity in CFT’s and find a one-parameter generalization of the aforementioned known results about the relative entropy. We also discuss a new family of positive energy theorems in asymptotically locally AdS spacetimes that arises from the holographic dual of the refined Rényi relative entropy.

Keywords: relative entropy; cft; nyi relative; holographic dual; entropy; state

Journal Title: Journal of High Energy Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.