LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Four-dimensional gravity on a covariant noncommutative space

Photo from wikipedia

We formulate a model of noncommutative four-dimensional gravity on a covariant fuzzy space based on SO(1,4), that is the fuzzy version of the $\text{dS}_4$. The latter requires the employment of… Click to show full abstract

We formulate a model of noncommutative four-dimensional gravity on a covariant fuzzy space based on SO(1,4), that is the fuzzy version of the $\text{dS}_4$. The latter requires the employment of a wider symmetry group, the SO(1,5), for reasons of covariance. Addressing along the lines of formulating four-dimensional gravity as a gauge theory of the Poincare group, spontaneously broken to the Lorentz, we attempt to construct a four-dimensional gravitational model on the fuzzy de Sitter spacetime. In turn, first we consider the SO(1,4) subgroup of the SO(1,5) algebra, in which we were led to, as we want to gauge the isometry part of the full symmetry. Then, the construction of a gauge theory on such a noncommutative space directs us to use an extension of the gauge group, the SO(1,5)$\times$U(1), and fix its representation. Moreover, a 2-form dynamic gauge field is included in the theory for reasons of covariance of the transformation of the field strength tensor. Finally, the gauge theory is considered to be spontaneously broken to the Lorentz group with an extension of a U(1), i.e. SO(1,3)$\times$U(1). The latter defines the four-dimensional noncommutative gravity action which can lead to equations of motion, whereas the breaking induces the imposition of constraints that will lead to expressions relating the gauge fields. It should be noted that we use the euclidean signature for the formulation of the above programme.

Keywords: four dimensional; dimensional gravity; gravity; gauge; space; gravity covariant

Journal Title: Journal of High Energy Physics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.