LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bubble wall velocity at strong coupling

Photo from wikipedia

Abstract Using the holographic correspondence as a tool, we determine the steady-state velocity of expanding vacuum bubbles nucleated within chiral finite temperature first-order phase transitions occurring in strongly coupled large… Click to show full abstract

Abstract Using the holographic correspondence as a tool, we determine the steady-state velocity of expanding vacuum bubbles nucleated within chiral finite temperature first-order phase transitions occurring in strongly coupled large N QCD-like models. We provide general formulae for the friction force exerted by the plasma on the bubbles and for the steady-state velocity. In the top-down holographic description, the phase transitions are related to changes in the embedding of $$ Dq\hbox{-} \overline{D}q $$ Dq ‐ D ¯ q flavor branes probing the black hole background sourced by a stack of N Dp-branes. We first consider the Witten-Sakai-Sugimoto $$ D4\hbox{-} D8\hbox{-} \overline{D}8 $$ D 4 ‐ D 8 ‐ D ¯ 8 setup, compute the friction force and deduce the equilibrium velocity. Then we extend our analysis to more general setups and to different dimensions. Finally, we briefly compare our results, obtained within a fully non-perturbative framework, to other estimates of the bubble velocity in the literature.

Keywords: velocity; velocity strong; strong coupling; wall velocity; bubble wall; hbox

Journal Title: Journal of High Energy Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.