LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Black hole thermodynamics with dynamical lambda

Photo from wikipedia

A bstractWe study evolution and thermodynamics of a slow-roll transition between early and late time de Sitter phases, both in the homogeneous case and in the presence of a black… Click to show full abstract

A bstractWe study evolution and thermodynamics of a slow-roll transition between early and late time de Sitter phases, both in the homogeneous case and in the presence of a black hole, in a scalar field model with a generic potential having both a maximum and a positive minimum. Asymptotically future de Sitter spacetimes are characterized by ADM charges known as cosmological tensions. We show that the late time de Sitter phase has finite cosmological tension when the scalar field oscillation around its minimum is underdamped, while the cosmological tension in the overdamped case diverges. We compute the variation in the cosmological and black hole horizon areas between the early and late time phases, finding that the fractional change in horizon area is proportional to the corresponding fractional change in the effective cosmological constant. We show that the extended first law of thermodynamics, including variation in the effective cosmological constant, is satisfied between the initial and final states, and discuss the dynamical evolution of the black hole temperature.

Keywords: hole thermodynamics; thermodynamics; black hole; thermodynamics dynamical; late time

Journal Title: Journal of High Energy Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.