LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modular invariance, tauberian theorems and microcanonical entropy

Photo by galen_crout from unsplash

A bstractWe analyze modular invariance drawing inspiration from tauberian theorems. Given a modular invariant partition function with a positive spectral density, we derive lower and upper bounds on the number… Click to show full abstract

A bstractWe analyze modular invariance drawing inspiration from tauberian theorems. Given a modular invariant partition function with a positive spectral density, we derive lower and upper bounds on the number of operators within a given energy interval. They are most revealing at high energies. In this limit we rigorously derive the Cardy formula for the microcanonical entropy together with optimal error estimates for various widths of the averaging energy shell. We identify a new universal contribution to the microcanonical entropy controlled by the central charge and the width of the shell. We derive an upper bound on the spacings between Virasoro primaries. Analogous results are obtained in holographic 2d CFTs. We also study partition functions with a UV cutoff. Control over error estimates allows us to probe operators beyond the unity in the modularity condition. We check our results in the 2d Ising model and the Monster CFT and find perfect agreement.

Keywords: invariance tauberian; microcanonical entropy; entropy; modular invariance; tauberian theorems

Journal Title: Journal of High Energy Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.